3.1.47 \(\int \text {ArcTan}(a+b x) \, dx\) [47]

Optimal. Leaf size=33 \[ \frac {(a+b x) \text {ArcTan}(a+b x)}{b}-\frac {\log \left (1+(a+b x)^2\right )}{2 b} \]

[Out]

(b*x+a)*arctan(b*x+a)/b-1/2*ln(1+(b*x+a)^2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {5147, 4930, 266} \begin {gather*} \frac {(a+b x) \text {ArcTan}(a+b x)}{b}-\frac {\log \left ((a+b x)^2+1\right )}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcTan[a + b*x],x]

[Out]

((a + b*x)*ArcTan[a + b*x])/b - Log[1 + (a + b*x)^2]/(2*b)

Rule 266

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 4930

Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTan[c*x^n])^p, x] - Dist[b*c
*n*p, Int[x^n*((a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0
] && (EqQ[n, 1] || EqQ[p, 1])

Rule 5147

Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Dist[1/d, Subst[Int[(a + b*ArcTan[x])^p, x],
 x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int \tan ^{-1}(a+b x) \, dx &=\frac {\text {Subst}\left (\int \tan ^{-1}(x) \, dx,x,a+b x\right )}{b}\\ &=\frac {(a+b x) \tan ^{-1}(a+b x)}{b}-\frac {\text {Subst}\left (\int \frac {x}{1+x^2} \, dx,x,a+b x\right )}{b}\\ &=\frac {(a+b x) \tan ^{-1}(a+b x)}{b}-\frac {\log \left (1+(a+b x)^2\right )}{2 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 39, normalized size = 1.18 \begin {gather*} -\frac {-2 (a+b x) \text {ArcTan}(a+b x)+\log \left (1+a^2+2 a b x+b^2 x^2\right )}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcTan[a + b*x],x]

[Out]

-1/2*(-2*(a + b*x)*ArcTan[a + b*x] + Log[1 + a^2 + 2*a*b*x + b^2*x^2])/b

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 30, normalized size = 0.91

method result size
derivativedivides \(\frac {\left (b x +a \right ) \arctan \left (b x +a \right )-\frac {\ln \left (1+\left (b x +a \right )^{2}\right )}{2}}{b}\) \(30\)
default \(\frac {\left (b x +a \right ) \arctan \left (b x +a \right )-\frac {\ln \left (1+\left (b x +a \right )^{2}\right )}{2}}{b}\) \(30\)
risch \(-\frac {i x \ln \left (1+i \left (b x +a \right )\right )}{2}+\frac {i x \ln \left (1-i \left (b x +a \right )\right )}{2}+\frac {a \arctan \left (b x +a \right )}{b}-\frac {\ln \left (b^{2} x^{2}+2 a b x +a^{2}+1\right )}{2 b}\) \(66\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctan(b*x+a),x,method=_RETURNVERBOSE)

[Out]

1/b*((b*x+a)*arctan(b*x+a)-1/2*ln(1+(b*x+a)^2))

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 31, normalized size = 0.94 \begin {gather*} \frac {2 \, {\left (b x + a\right )} \arctan \left (b x + a\right ) - \log \left ({\left (b x + a\right )}^{2} + 1\right )}{2 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(b*x+a),x, algorithm="maxima")

[Out]

1/2*(2*(b*x + a)*arctan(b*x + a) - log((b*x + a)^2 + 1))/b

________________________________________________________________________________________

Fricas [A]
time = 2.45, size = 39, normalized size = 1.18 \begin {gather*} \frac {2 \, {\left (b x + a\right )} \arctan \left (b x + a\right ) - \log \left (b^{2} x^{2} + 2 \, a b x + a^{2} + 1\right )}{2 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(b*x+a),x, algorithm="fricas")

[Out]

1/2*(2*(b*x + a)*arctan(b*x + a) - log(b^2*x^2 + 2*a*b*x + a^2 + 1))/b

________________________________________________________________________________________

Sympy [A]
time = 0.14, size = 46, normalized size = 1.39 \begin {gather*} \begin {cases} \frac {a \operatorname {atan}{\left (a + b x \right )}}{b} + x \operatorname {atan}{\left (a + b x \right )} - \frac {\log {\left (a^{2} + 2 a b x + b^{2} x^{2} + 1 \right )}}{2 b} & \text {for}\: b \neq 0 \\x \operatorname {atan}{\left (a \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atan(b*x+a),x)

[Out]

Piecewise((a*atan(a + b*x)/b + x*atan(a + b*x) - log(a**2 + 2*a*b*x + b**2*x**2 + 1)/(2*b), Ne(b, 0)), (x*atan
(a), True))

________________________________________________________________________________________

Giac [A]
time = 0.39, size = 31, normalized size = 0.94 \begin {gather*} \frac {2 \, {\left (b x + a\right )} \arctan \left (b x + a\right ) - \log \left ({\left (b x + a\right )}^{2} + 1\right )}{2 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(b*x+a),x, algorithm="giac")

[Out]

1/2*(2*(b*x + a)*arctan(b*x + a) - log((b*x + a)^2 + 1))/b

________________________________________________________________________________________

Mupad [B]
time = 0.45, size = 42, normalized size = 1.27 \begin {gather*} x\,\mathrm {atan}\left (a+b\,x\right )-\frac {\ln \left (a^2+2\,a\,b\,x+b^2\,x^2+1\right )-2\,a\,\mathrm {atan}\left (a+b\,x\right )}{2\,b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atan(a + b*x),x)

[Out]

x*atan(a + b*x) - (log(a^2 + b^2*x^2 + 2*a*b*x + 1) - 2*a*atan(a + b*x))/(2*b)

________________________________________________________________________________________